Final Clinical and Biomarker Data from a Phase 2 Trial of Posoleucel, an Off-the-shelf, Multivirus-specific T Cell Therapy, for Prevention of Clinically Significant Viral Infections Post-HCT

Sanjeet S. Dadwal1, Jo-Anne H. Young2, Michael W. Schuster3, Jean A. Yared4, Gary Douglas Myers5, Michelle Matzko6, Sama Adnan6, Sarah Gilmore6, Spyridoula Vasileiou6,7, Ann M. Leen6,7, Joshua A. Hill8, Rajat Bansal9

1City of Hope National Medical Center, Duarte, CA; 2University of Minnesota, Minneapolis, MN; 3Stony Brook University Hospital Cancer Center, Stony Brook, NY; 4University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD; 5Children’s Mercy of Kansas City, Kansas City, MS; 6AlloVir, Waltham, MA; 7Baylor College of Medicine, Houston; 8Fred Hutchinson Cancer Center, Seattle, WA; 9University of Kansas Medical Center, Kansas City, KS
Disclosures

• Advisory Board Meetings participation for Kite, Omeros, Kadmon, Sanofi and Incyte.

• Research grant from Kite.
Allo-HCT Patients Have a High Risk of Viral Reactivation Which Can Lead to Clinically Significant Infections or Disease

- Mortality directly correlates with viral burden: each 10-fold increase in viral burden translates to a nearly 40% increase in overall mortality\(^1\)

Posoleucel (ALVR105)

- Allogeneic, off-the-shelf, multivirus-specific T-cell (VST) therapy targeting AdV, BKV, CMV, EBV, HHV-6, and JCV*
- The cell bank is rationally designed to ensure availability of partially HLA-matched VSTs to >95% patients (minimum 2 HLA allele-match)
- Posoleucel (PSL) is designed to control viremia preventing progression to CSIs

*JCV activity based on homology with BKV
Posoleucel Is Composed of Functional Virus-Specific T Cells with Low Alloreactive Potential

- Posoleucel is composed of polyclonal CD4$^+$ and CD8$^+$ T cells potent against each of the target viruses\(^1\)
- The selective enrichment of virus-specific T cells during manufacturing process yields VSTs with low alloreactive potential

Virologic and Immunologic Landscape Post Allo-Hematopoietic Cell Transplantation (HCT) (without Posoleucel)

- T cells
- Viral load
- CSI and/or end organ disease (EOD)
- Donor immune reconstitution
- HCT
- Viremia

Time
Virologic and Immunologic Landscape post Allo-HCT (with Posoleucel)
Phase 2 Prevention Study Design

High-risk allo-HCT patients (cord donor, haplo donor, MMRD, MMUD, T-cell depletion, MUD with persistent lymphopenia <180/mm³) → Posoleucel Every 14 days for 7 doses → 12 weeks follow-up → 52 weeks Post-study visit

Baseline First posoleucel infusion
Week 14 Primary endpoint

Primary endpoint: The number of new onset clinically significant infections* through Week 14

*Clinically significant infections include both clinically significant viremia and end-organ disease
Patient Disposition

37 patients screened

26 patients dosed

Only 1 patient did not have matching cell line (97% coverage)

Posoleucel administered a median of 43 days (range 24-53) post allo-HCT

16 patients completed treatment
14 received all 7 doses

10 patients discontinued treatment early
Median 4 (range 1-6) doses completed

- 3 relapse/progression
- 3 GVHD
- 2 return to home state
- 2 pt choice due to unrelated complications (UTI, C. diff.)
Demographic and Baseline Characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>N=26</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, median years (range)</td>
<td>60 (14-76)</td>
</tr>
<tr>
<td>Female, n (%)</td>
<td>12 (46)</td>
</tr>
<tr>
<td>Non-Caucasian or Latino, n (%)</td>
<td>12 (46)</td>
</tr>
<tr>
<td>Diagnosis, n (%)</td>
<td></td>
</tr>
<tr>
<td>Leukemia</td>
<td>17 (65)</td>
</tr>
<tr>
<td>Myelodysplasia/Myeloproliferative</td>
<td>3 (12)</td>
</tr>
<tr>
<td>Lymphoma</td>
<td>2 (8)</td>
</tr>
<tr>
<td>Sickle cell anemia</td>
<td>2 (8)</td>
</tr>
<tr>
<td>Other*</td>
<td>2 (8)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>N=26</th>
</tr>
</thead>
<tbody>
<tr>
<td>Donor type, n (%)</td>
<td></td>
</tr>
<tr>
<td>Haploidentical</td>
<td>12 (46)</td>
</tr>
<tr>
<td>Mismatched unrelated</td>
<td>9 (35)</td>
</tr>
<tr>
<td>Matched unrelated†</td>
<td>4 (15)</td>
</tr>
<tr>
<td>Umbilical cord blood</td>
<td>1 (4)</td>
</tr>
<tr>
<td>Myeloablative conditioning, n (%)</td>
<td>12 (46)</td>
</tr>
<tr>
<td>PTCy, n (%)</td>
<td>20 (77)</td>
</tr>
<tr>
<td>Letermovir use at baseline, n (%)</td>
<td>16 (62)</td>
</tr>
<tr>
<td>Viremia at baseline, n (%)‡</td>
<td>12 (46)</td>
</tr>
</tbody>
</table>

*Multiple myeloma and adrenoleukodystrophy.
†Matched unrelated transplant recipients included if also met another high-risk criterion: T-cell depletion or persistent lymphopenia.
‡Viremia at baseline: 1 Adv, 8 BKV, 2 EBV, and 5 HHV-6 viremia(s) in 12 patients.
Safety and Tolerability in First 26 Weeks

- 5/26 (19%) patients had grade II-IV acute GVHD
- No episodes of cytokine release syndrome
- One secondary graft failure assessed by investigator as unrelated to posoleucel

<table>
<thead>
<tr>
<th>Patients with events, n (%)</th>
<th>N=26</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any TEAEs</td>
<td>26 (100)</td>
</tr>
<tr>
<td>SAEs</td>
<td>19 (73)</td>
</tr>
<tr>
<td>Treatment-related SAEs*</td>
<td>3 (12)</td>
</tr>
<tr>
<td>Discontinuation of posoleucel due to TEAEs</td>
<td>4 (15)</td>
</tr>
<tr>
<td>Deaths due to TEAEs</td>
<td>4 (15)</td>
</tr>
<tr>
<td>TEAEs of special interest</td>
<td>14 (54)</td>
</tr>
<tr>
<td>Acute GVHD II-IV</td>
<td>5 (19)</td>
</tr>
<tr>
<td>Acute GVHD III-IV</td>
<td>2 (8)</td>
</tr>
<tr>
<td>Any chronic GVHD</td>
<td>5 (19)</td>
</tr>
<tr>
<td>Cytokine release syndrome</td>
<td>0</td>
</tr>
<tr>
<td>Infusion reaction†</td>
<td>1 (4)</td>
</tr>
<tr>
<td>Graft failure</td>
<td>1 (4)</td>
</tr>
</tbody>
</table>

*1 skin GVHD, 1 hypersensitivity reaction, 1 chronic pulmonary GVHD.
†This event resolved, and patient received an additional 2 doses of posoleucel.
Low Rates of Clinically Significant Infections through Week 14 (Primary Endpoint)

- 22 (85%) of patients developed 1+ virus; 13 (50%) 2+ viral reactivations
- 3 (12%) CSIs* observed despite high rate of viral reactivations
- 4 (15%) additional CSIs occurring in the secondary endpoint
 - 2 (50%) in setting of chemotherapy due to relapse

*2 patients with asymptomatic & pre-emptively treated CMV infection; 1 patient with EBV PTLD in the setting of high-dose steroid.
0% Day 400 Non-Relapse Mortality

- All deaths (N=5) due to relapse or disease progression
 - No infection related mortality
- 0% Day 400 NRM compares favorably to historic rates of 9-13% reported for allo-HCT patients\(^1\)-\(^3\)

Frequency of TNF-producing Virus-Specific T Cells

Aggregate ELISPOT data shown for N=39/45 viremia (peak response on treatment Wk 1 – Wk 14), N=53 aviremia (peak response on treatment Wk 1 – Wk 14), and N=55 baseline (Pre, Day 0); ELISPOT data shown includes three clinically significant infections.
Increased Frequency of IFNγ-producing T Cells Was Associated with Reduction in Viremia

Data shown from patients with available samples at Pre (Day 0) and/or Post (peak response on treatment Wk 1-Wk 14) timepoints.
Increased Frequency of IFNγ-producing T Cells Was Associated with Reduction in Viremia

ELISpot data shown from patients with available samples at Pre (Day 0) and/or Post (peak response on treatment Wk 1 – Wk 14) timepoints. Viral load (VL) data shown as peak viral load during primary endpoint period (Pre, Day 0 – Wk 14) and viral load at primary endpoint (Post, Wk 14 or last available time point); viral load data from CSIs excluded.
Expansion of Virus-Specific T Cells and Control of Viremia

- 61-year-old male MMUD; CMV serostatus D-/R+; discontinued letermovir prior to 1st posoleucel dose; received all 7 posoleucel doses
- Expansion of functional CMV VSTs coincident with control of CMV viremia, not requiring antiviral treatment
- Confirmed detection of posoleucel TCRs during viremia with changes in frequencies coincident with viremia
TCRβ Clones Unique to PSL Are Detected During Infusion and After

- Posoleucel clones detected in patients with available TCR sequencing data
 - During infusion period
 - Up to 14 weeks after last infusion

Presence of posoleucel-derived clones (based on tracking TCRvβ sequences) shared by the posoleucel product and post-infusion peripheral blood samples
Conclusions

- Low rates of clinically significant infections or end-organ disease were observed in this high-risk allo-HCT population
- 0% Day 400 Non-relapse mortality and no infection related mortality
- Treatment with up to 7 doses of posoleucel over 12 weeks was well tolerated
 - Rates of GVHD were similar in frequency and severity to those expected in high-risk allo-HCT population
- Viral control was associated with expansion of reactive T cells
 - The presence of posoleucel was confirmed during and after infusion period
- These data support the ongoing global, randomized, placebo-controlled Phase III clinical trial of posoleucel for the prevention of clinically significant infections and end-organ disease (NCT05305040)
Acknowledgments

• Thanks to Manik Kuvalekar, Ayumi Watanabe, and Yovana Velazquez for their work on the biomarker analyses

• We extend our thanks to investigators, patients, and families

• This study was funded by AlloVir