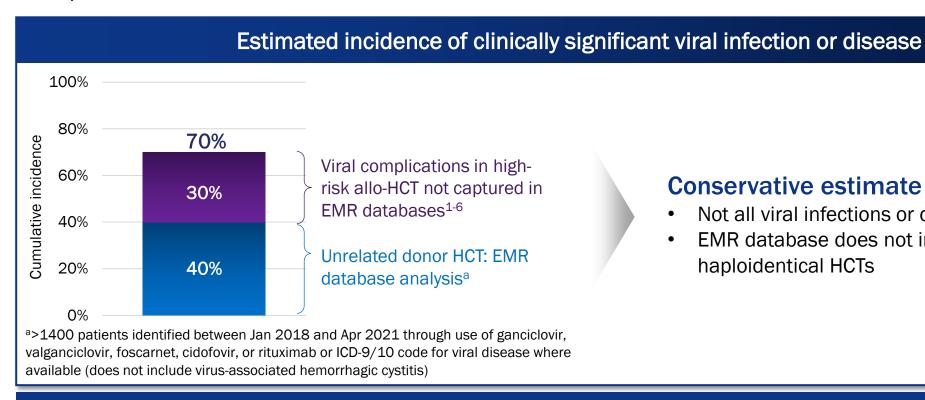

Posoleucel (ALVR105), an Off-the-Shelf, Multivirus-Specific T-Cell Therapy, for the Prevention of Viral Infections Post-HCT Results from an Open-Label Cohort of a Phase 2 Trial

Sanjeet S. Dadwal¹, Michael Schuster², Gary Douglas Myers³, Michelle Matzko⁴, Marshelle Warren⁵, Elizabeth Stoner⁴, Thuy Truong¹, Joshua A. Hill⁶

¹City of Hope National Medical Center, Duarte, CA; ²Stony Brook Cancer Center, Stony Brook, NY; ³Children's Mercy Hospital, Kansas City, MO; ⁴AlloVir, Waltham, MA; ⁵Glacier Bio, North Bend, WA; ⁶Fred Hutchinson Cancer Research Center, Seattle, WA

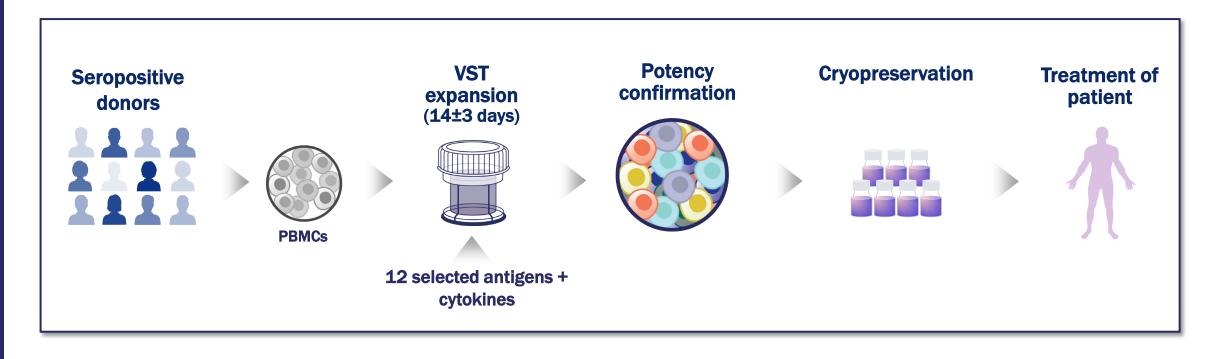
Multivirus Infections Are Common in Allogeneic HCT Patients and Contribute to Significant Mortality



 61% of patients were treated with antiviral therapies, excluding rituximab, within the first 100 days

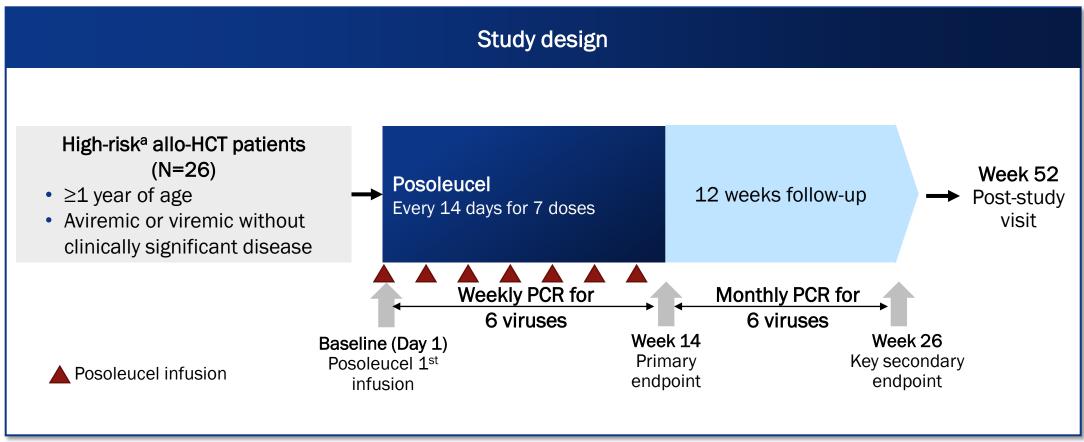
Approximately 70% Incidence of Clinically Significant Infection and Disease in High-Risk Allo-HCT Patients due to AdV, BKV, CMV, EBV, HHV-6, or JCV

- Allogeneic HCT (allo-HCT) patients are at high risk for common double-stranded DNA infections: AdV, BKV, CMV, EBV, HHV-6, and JCV
- Allo-HCT patients at highest risk: haploidentical donor, UCB, MMUD, MUD, MMRD, T cell depletion


Conservative estimate

- Not all viral infections or diseases captured⁷
- EMR database does not include patients with haploidentical HCTs

There is an unmet need for preventive therapies targeting multiple viruses in high-risk allo-HCT patients


Posoleucel (ALVR105)

- Allogeneic, off-the-shelf, multivirus-specific T-cell (VST) therapy targeting AdV, BKV, CMV, EBV, HHV-6, and JCV^a
- 93% response rate in Phase 2 CHARMS study¹

Phase 2 Multivirus Prevention Open-Label Study (NCT04693637)

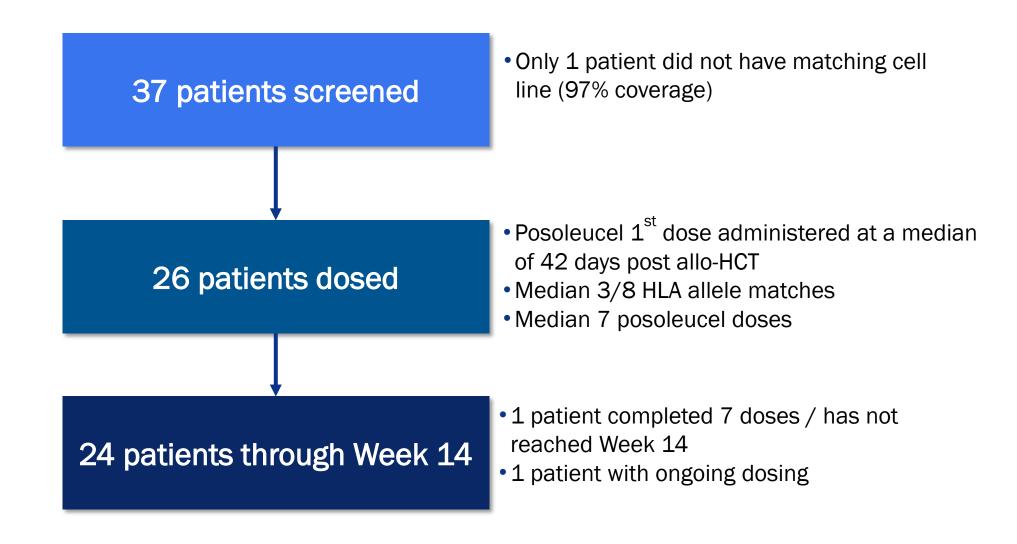
Completed Phase 2 target patient enrollment

^aHigh-risk allo-HCT defined as: umbilical cord donor, haploidentical donor, MMRD, MMUD, recipient of T-cell depletion (ex vivo, alemtuzumab, ATG), MUD with persistent lymphopenia <180/mm³

Endpoint

<u>Primary endpoint</u>: The number of new onset clinically significant infections or episodes of end-organ disease through Week 14

Clinically significant viral infection	Above viral load threshold • CMV: >910 IU/mL • EBV/AdV: >10,000 copies/mL OR >1,000 copies/mL and rising ^a AND Initiation of preemptive antiviral therapy
End-organ disease	Signs or symptoms of organ damage from AdV, BKV, CMV, EBV, HHV-6, or JCV


Baseline Demographics

Patients at high risk for viral infections or end-organ disease were enrolled

Characteristic	N=26
Age, median years (range)	60 (14-76)
Female	12 (46%)
Non-Caucasian or Latino	12 (46%)
Diagnosis	
Leukemia	17 (65%)
Myelodysplasia/Myeloproliferative	3 (12%)
Lymphoma	2 (8%)
Sickle cell anemia	2 (8%)
Other ^a	2 (8%)

Characteristic	N=26		
Donor type			
Haploidentical	12 (46%)		
Mismatched unrelated	9 (35%)		
Matched unrelated	4 (15%)		
Umbilical cord blood	1 (4%)		
Myeloablative conditioning	12 (46%)		
Baseline viremia ^b	11 (42%)		
Letermovir prophylaxis	16 (62%)		

Patient Disposition^a

Safety and Tolerability

- No unanticipated treatment-emergent adverse events (TEAEs) or serious adverse events (SAEs) were reported
- 6/26 (23%) grade II-IV acute GVHD
 - Lower than 35-50% of grade II-IV GVHD reported in high risk allo-HCTs¹⁻³
 - No association between reported GVHD and number of HLA matches for posoleucel
 - No association between reported GVHD and number of posoleucel doses
- An independent DSMB reviewed safety data and endorsed the initiation of phase 3 study without modification

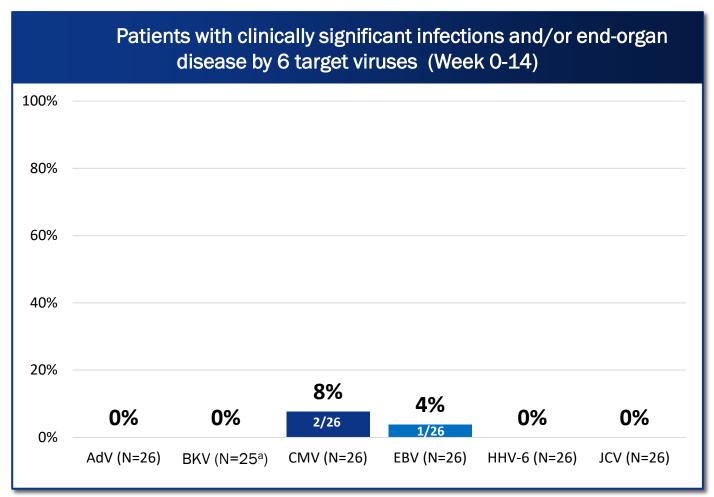
Events	N=26	
Common TEAEs		
Diarrhea	14 (54%)	
Weight decrease	6 (23%)	
SAEs	16 (62%)	
Treatment-related SAE	3 (12%)ª	
Deaths	1 (4%) ^b	
Posoleucel discontinuations due to TEAEs	3 (12%) ^c	
Adverse events of interest		
Acute GVHD II-IV	6 (23%)	
Grade II	2 (8%)	
Grade III	4 (15%)	
Grade IV	0	
Cytokine release syndrome	0	
Infusion reaction	1 (4%) ^d	

^{°1} patient with infusion reaction; 1 patient with acute GVHD; 1 patient with chronic GVHD.

^bDue to relapse of primary malignancy ~2 months after the 7th dose of posoleucel.

^c1 discontinuation assessed as not related to posoleucel; 2 discontinuations assessed as possibly related to posoleucel.

^dTolerated subsequent posoleucel doses with pre-medication (diphenhydramine).


Preliminary Efficacy Results: Primary Endpoint (Week 14)

2 clinically significant infections

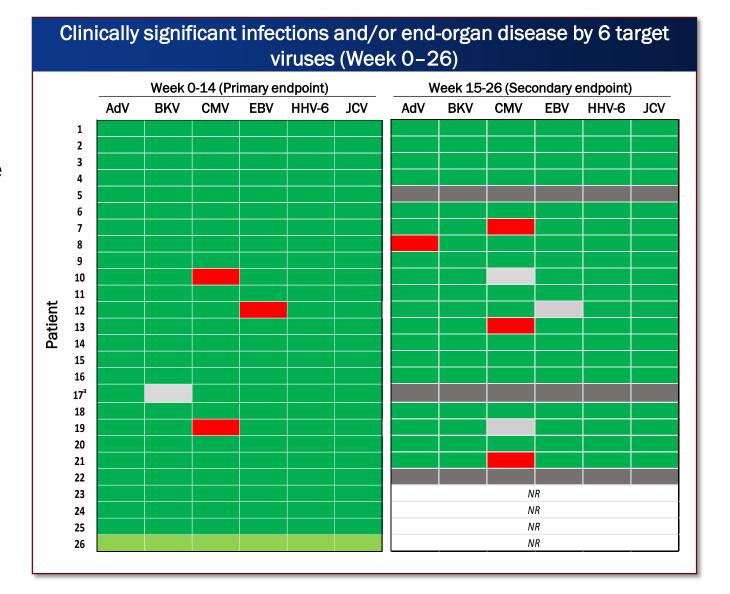
 2 patients started on preemptive valganciclovir for CMV

1 end-organ disease

 1 patient started on rituximab for EBV-PTLD in the setting of high-dose steroids

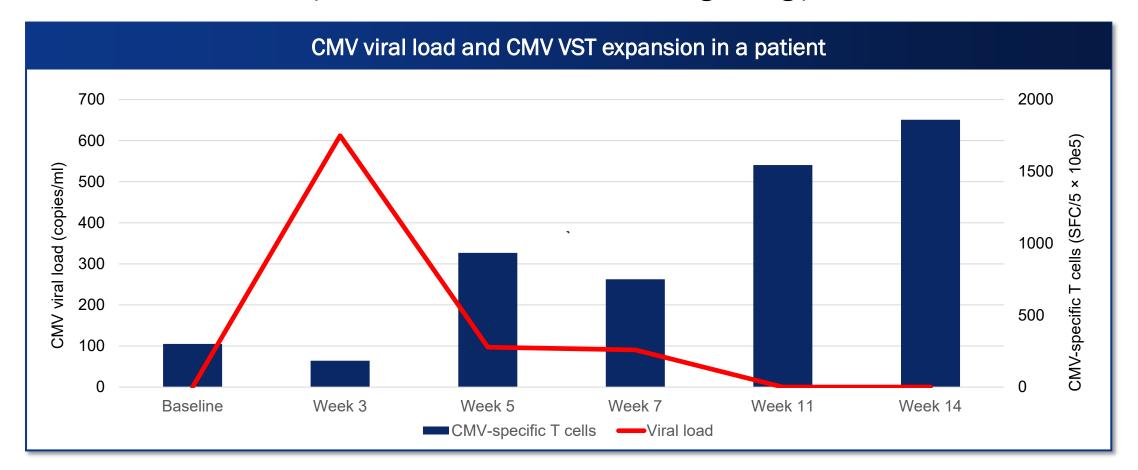
^aOne patient excluded due to BKV-associated hemorrhagic cystitis at baseline.

Preliminary Efficacy Results: Secondary Endpoint

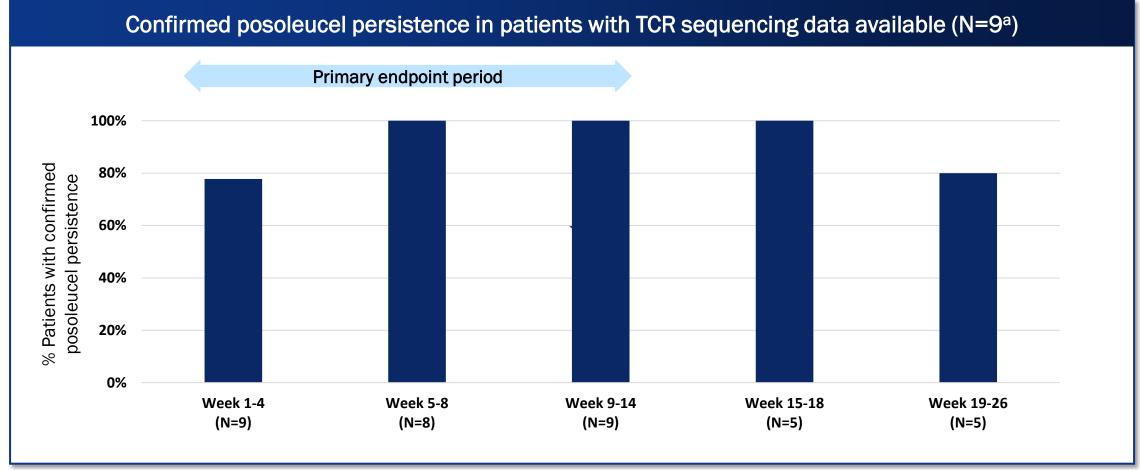

4 additional clinically significant infections

- 3 patient started on pre-emptive valganciclovir for CMV
- 1 patient started cidofovir for AdV in the setting of high-dose steroids

No end-organ disease

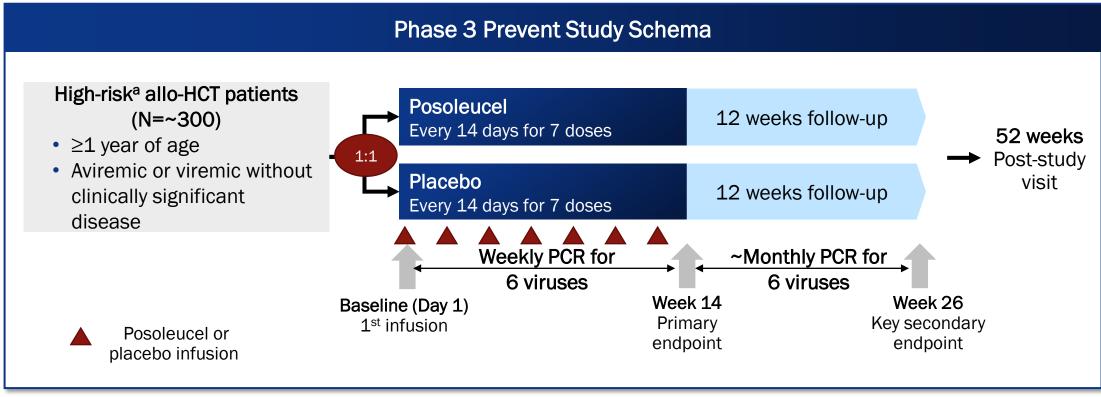

- Patient with completed or stopped dosing who did not develop clinically significant infection or disease
- Patient with ongoing dosing/monitoring who has not developed clinically significant infection or disease
- Patient who developed new onset clinically significant infection or disease
- Patient sample not collected
- Previous clinically significant infection or disease

NR Week 18 timepoint not yet reached


CMV Infection Controlled without Letermovir or Pre-Emptive Therapy while on Posoleucel

- 61-year-old with MMUD HCT for cutaneous T cell lymphoma; CMV serostatus: D-/R+
- Discontinued letermovir 1 day prior to 1st posoleucel dose; completed 7 posoleucel doses
- Expansion of functional (IFNγ-producing) VSTs coincident with control of viremia
- Confirmed detection of posoleucel VST-derived TCRs during dosing period

Posoleucel Persists in vivo


 Posoleucel VSTs detected throughout the infusion period and persisted up to the last time point measured

^a9 patients received ≥6 posoleucel doses were analyzed.

Phase 3 Multivirus Prevention Study (EBMT Poster P309)

- First placebo-controlled registrational study to evaluate an off-the-shelf, multivirus-specific T-cell therapy for the prevention of clinically significant infections or episodes of end-organ disease due to 6 target viruses in high-risk allo-HCT patients
- Global Phase 3 Multivirus Prevention Study has been initiated

^aHigh-risk allo-HCT defined as: umbilical cord donor, haploidentical donor, MMRD, MUD, MMUD, recipient of T-cell depletion (ex vivo, alemtuzumab, ATG),

Conclusions

- Approximately 70% of high-risk allo-HCT patients develop clinically significant viral infections or disease due to AdV, BKV, CMV, EBV, HHV-6, or JCV
- Phase 2 Multivirus Prevention study:
 - Demonstrated >95% coverage of posoleucel in target population
 - High-risk allo-HCT patients receiving posoleucel had low rates of clinically significant viral infections
 - Repeat dosing of posoleucel was generally safe and well tolerated
 - Expansion of functional VSTs detected
 - Posoleucel detected during the infusion period and persisted
- Phase 3 Multivirus Prevention Study has been initiated

Acknowledgments

- We extend our thanks to the patients and their families
- We extend our thanks to all participating investigators
 - Sanjeet S. Dadwal, City of Hope National Medical Center
 - Rajat Bansal, University of Kansas Medical Center
 - Jo-Anne Young, University of Minnesota
 - Michael Schuster, Stony Brook Cancer Center
 - Jean A. Yared, University of Maryland
 - Gary D. Myers, Children's Mercy Hospital
 - Frederick Goldman, University of Alabama
 - Joshua Hill, Fred Hutchinson Cancer Center
 - Mohammad I. Abu Zaid, Indiana University Simon Comprehensive Cancer Center
 - Christopher Dvorak, UCSF Benioff Children's Hospitals
 - David Jacobsohn, Children's National Hospital
- This study is funded by AlloVir